7,740 research outputs found

    Estimating the Impacts of Climate Change on Mortality in OECD Countries

    Get PDF
    The major contribution of this study is to combines both climatic and macroeconomic factors simultaneously in the estimation of mortality using the capital city of 22 OECD countries from the period 1990 to 2008. The empirical results provide strong evidences that higher income and a lower unemployment rate could reduce mortality rates, while the increases in precipitation and temperature variation have significantly positive impacts on the mortality rates. The effects of changing average temperature on mortality rates in summer and winter are asymmetrical and also depend on the location. Combining the future climate change scenarios with the estimation outcomes show that mortality rates in OECD countries in 2100 will be increased by 3.77% to 5.89%.Climate change; mortality; panel data model

    Collision-induced flavor instability in dense neutrino gases with energy-dependent scattering

    Full text link
    We investigate the collision-induced flavor instability in homogeneous, isotropic, dense neutrino gases in the two-flavor mixing scenario with energy-dependent scattering. We uncover a simple expression of the growth rate of this instability in terms of the flavor-decohering collision rates and the electron lepton number distribution of the neutrino. This growth rate is common to the neutrinos and antineutrinos of different energies, and is independent of the mass-splitting and vacuum mixing angle of the neutrino, the matter density, and the neutrino density, although the initial amplitude of the unstable oscillation mode can be suppressed by a large matter density. Our results suggest that neutrinos are likely to experience collision-induced flavor conversions deep inside a core-collapse supernova even when both the fast and slow collective flavor oscillations are suppressed.Comment: 7 pages, 4 figures. Minor changes for clarification purpose

    An Intelligent Auxiliary Vacuum Brake System

    Get PDF
    The purpose of this paper focuses on designing an intelligent, compact, reliable, and robust auxiliary vacuum brake system (VBS) with Kalman filter and self-diagnosis scheme. All of the circuit elements in the designed system are integrated into one programmable system-on-chip (PSoC) with entire computational algorithms implemented by software. In this system, three main goals are achieved: (a) Kalman filter and hysteresis controller algorithms are employed within PSoC chip by software to surpass the noises and disturbances from hostile surrounding in a vehicle. (b) Self-diagnosis scheme is employed to identify any breakdown element of the auxiliary vacuum brake system. (c) Power MOSFET is utilized to implement PWM pump control and compared with relay control. More accurate vacuum pressure control has been accomplished as well as power energy saving. In the end, a prototype has been built and tested to confirm all of the performances claimed above

    Intramuscular Hemangioma of the Temporalis Muscle With Incidental Finding of Bilateral Symmetric Calcification of the Basal Ganglia: A Case Report

    Get PDF
    We report an 11-year-old boy whose brain computed tomography findings incidentally revealed bilateral basal ganglia calcification. He was symptom-free and had no abnormal neurological findings. He was diagnosed with Fahr's disease based on radiological findings and after excluding other etiologies such as infection, metabolic disorders, congenital malformation and malignancies. Most of the reported cases display an autosomal dominant mode of inheritance. Although Fahr's disease is a rare cause of basal ganglia calcification in children, this disease should be considered in children with a family history of neuropsychiatric disorders

    Probing the Pore of ClC-0 by Substituted Cysteine Accessibility Method Using Methane Thiosulfonate Reagents

    Get PDF
    ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl− selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species
    corecore